• No shipping costs from € 15, -
  • Lists and tips from our own specialists
  • Possibility of ordering without an account
  • No shipping costs from € 15, -
  • Lists and tips from our own specialists
  • Possibility of ordering without an account

Semiconducting Nanomaterials for Photocatalytic Applications

Sajith , N. V

Semiconducting  Nanomaterials for Photocatalytic Applications
Semiconducting  Nanomaterials for Photocatalytic Applications

Semiconducting Nanomaterials for Photocatalytic Applications

Sajith , N. V

Paperback / Sewn | English
  • Available. Delivery time is 17 working day (s).
  • Not in stock in our shop
€36.40
  • From €15,- no shipping costs.
  • 30 days to change your mind and return physical products

Description

Semiconducting nanomaterials are a class of materials that exhibit unique properties and have garnered much interest in recent years due to their potential for use in various applications, including photocatalysis. Photocatalysis involves using light energy to drive chemical reactions, and semiconducting nanomaterials are particularly attractive for this purpose due to their ability to efficiently absorb light and generate reactive species.There are many different types of semiconducting nanomaterials that have been studied for photocatalytic applications, including metal oxides such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe2O3), as well as semiconductor nanocrystals such as quantum dots and nanowires.In photocatalytic applications, semiconducting nanomaterials are typically immobilized onto a substrate or suspended in a liquid or gas phase. When light is absorbed by the nanomaterial, it can generate electron-hole pairs that can then participate in redox reactions with adsorbed species or in the surrounding environment. This can lead to the production of reactive species such as superoxide and hydroxyl radicals, which can be used to degrade pollutants or perform other useful chemical transformations.The properties of semiconducting nanomaterials can be tuned by controlling their size, shape, and composition, which can affect their absorption spectra, surface area, and chemical reactivity. This has led to the development of a wide range of semiconducting nanomaterials with tailored properties for specific photocatalytic applications.Semiconducting nanomaterials show great promise for use in photocatalytic applications, and ongoing research is focused on developing new materials and improving their performance and stability for practical applications in areas such as water purification, air pollution control, and renewable energy production.Semiconductor metal oxide nanomaterials play a pivotal role in enormous areas of energy associated activities such as photocatalysis, gas sensors, water splittin, solar cells, optoelectronics etc. In this present scenario, the increase in consumption of non-renewable energy resources poses a serious threat to humankind's adverse effects on the environment.An effective solution to this problem is finding out materials that can efficiently utilize solar energy. One such material is semiconductor metal oxide nanomaterials. Researchers are constantly trying to design advanced semiconducting metal oxide nanomaterials with multifaceted application cost-effectively and straightforward. Semiconductor metal oxide nanomaterials such as TiO¿, ZnO, CeO¿, Bi¿O¿ etc., are important in the field of solar energy utilization; the major bottleneck in their utilization is the absorption range ie.; Their absorption from the UV region has to be shifted to the visible spectrum, then only efficientutilization of sunlight occurs.

Specifications

  • Publisher
    SAJITH N.V
  • Pub date
    Mar 2023
  • Pages
    146
  • Theme
    Nanosciences
  • Dimensions
    229 x 152 x 9 mm
  • Weight
    223 gram
  • EAN
    9783263544085
  • Paperback / Sewn
    Paperback / Sewn
  • Language
    English